
Proceedings of ASBBS   Volume 21 Number 1 

 

ASBBS Annual Conference: Las Vegas 772 February 2014 

 

AN EVENT BASED TASK MODEL FOR INTERACTIVE 

BUSINESS PROCESSES 
 

 

 

Parameswaran, Nandan 

University of New South Wales, Sydney, Australia 
 

Chakrapani, Pani N. 

University of Redlands, Redlands, USA 
 

 

 
 
 
 

ABSTRACT 

Achieving tasks successfully in dynamic environments needs attributes of task 

structures that are tolerant to changes in a business environment. In this paper, we have 

proposed an event based model for interactive tasks where the user interactions are represented 

in terms of agent intentions in the model. Temporal and other constraints and relations between 

events are expressed using event models. When constraints are violated, we have proposed 

strategies for managing deviations. Application of our task model to a simple shopping scenario 

shows that the model performs favourably in  real world. 
 

 

INTRODUCTION 
A task in a business application typically consists of  several activities which are represented using 

actions that agents will  execute in order to achieve one or more goals in the task. When all actions 

are successfully executed, the task is said to have been achieved. Achieving a task in changing 

environments is often challenging due to changes in states of resources and in the mental states of the 

agents that were initially committed to execute the task. For example, when an action is executed, 

there may be other events that unexpectedly follow the execution of the action, and these events may 

or may not take the resources to a desired state. In such situations, often agents may need to interact 

with the task structure and make changes in them so that the execution of the task can be continued 

in the changed situations. In this paper, we propose a task model that is suitable for execution in 

interactive applications. 

 

 

In Section 2 on Task Model for Interactive Application, we present a model of task using events, 

and show how complex tasks can be represented using event abstractions and relations where we 

define concepts of the relevant objects, relations, and temporal entities, and the associated 

constraints. In Section 3, we show an application of our model to grocery shopping. Section 4 



Proceedings of ASBBS   Volume 21 Number 1 

 

ASBBS Annual Conference: Las Vegas 773 February 2014 

 

briefly describes an initial version of an implementation of grocery shopping. In Section 5 we 

review the related work and Section 6 is conclusion. 

 
 

EVENT BASED TASK MODEL 
A world consists of objects where an object changes its state at time t when an event occurs at t on 

a timeline T.  Each object has its own timeline and events occurring on one object’s timeline may 

affect events occurring on another object’s timeline.  A task is modelled using events where the 

events are related to each other by relations that are temporal, spatial, and agent attitudinal. Figure 1 

shows a simple task structure consisting of events ei and state si occurring on a timeline T. An event 

is denoted as a transition from one state to another state in time. Thus, e1:s0 → s1 is an event where 

s0 and s1 denote the states of the objects in the world. Events typically occur at a point in a time line. 

We distinguish four types of events: 

(i) α type events  these events occur due to the execution of an action ai by an agent; 

(ii) 

(iii) 

λ type events  these events, denoted by la, occur due to an external agency; 

μ type events  these events, denoted ui, occur due to internal causes in the world 

resources; and 

(iv) ε type event  this denotes a null event written simply as ε . 

 

 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 784 February 2014 

 

When we do not care to distinguish between  events, we use ei to denote any of them.  

In Figure 1,  event e1 occurs at time t1 causing the state s1 which lasts until time t2 at 

which point another event e2 occurs causing state s2. At time t3, the diagram shows a 

choice of four events: (i) la:s2 → s3, (ii) a1: s2 → s4, (iii) E: s2 → s2, (iv) a2: s2 → s5 || 

a3: s2 → s6, where || signifies the fact that the actions a2 and a3 occur parallelly.  At 

t3, any one of the four events can occur. The state s6 is the result of executing the action 

a3 at time t3, and at time t4, one of events e3 and e4 will occur resulting in s7 or s8. 

Events generally do not occur in isolation and often they are related. In Figure 1, events 

e1 and e4 are related by the relation r1, denoted as r1(e1,e4). 

 

 
 

Abstractions over events and states 
Event diagrams can be simplified using abstractions over events and states. An event as 

well as a state can be an abstraction over events and states. Figure 2(a) shows a 

detailed event diagram and Figure 2(b) an abstract version of it. The event ea is an 

abstract event defined over events e1,e2,e3, and e4 and states s1,s2,and s3. Similarly, 

the state sa is an abstract state defined over the events e5,e6,e7,e8,e9,and e10, and the 

states s4,s5,s6,s7,s8,s9,and s10. Thus, we have an abstract event ea causing the state sa 

from the state s0, that is, ea:s0 → sa. Note the the relation r1(e1,e2) has been hidden in 

ea since r1 was viewed as a lower level level entity. 

 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 785 February 2014 

 

 
 

 

 

 

Abstraction over parallelly occurring events and 

states 
Figure 3 shows an abstraction over parallel events. The event e12 is an event 

abstraction over the events e1 and e2, and the state s12 is a state abstraction over 

the states s1 and s2. 

 

 

 

Relations 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 786 February 2014 

 

The following table contains some of the important relations that are useful in 

interactive task model. 
 

Relation 
 

Description 

(Events may occur in different timelines or on the same timeline.) 

 

e1 enables e2 
 

/* Successful occurrence of e1 at time t1 enables the occurrence of e2 at t2. If e1 does 

not occur (successfully),  e2 will  not occur. */ 

∀e1 ∀t2∀e2 ∃ t1 [ t2 > t1 & Occurs(e2,t2) → Occurs(e1,t1) ] 

Note that there may be more than one event enabling  an event. 

 

e1 commits e2 
 

/* Occurrence of e1 at t1 will make the agent A commit to the occurrence of e2 at a 

later point t2 in time. */ 

∀e1 ∀t1∀e2 ∃ t2  [occurrence(e1,t1) & t1 < t2 → commit (A,e2,t2)] 

 

e1 disables e2 
 

/*The occurrence of e1 at t1  disables the occurrence of e2 at time in future. */ 

∀e1 ∀t2∀e2 ∀ t1  [ Occurs(e1,t1) → ¬  Occurs(e2,t2) ]  where  the symbol ¬ 

stands for negation. 

 

e1 causes  e2 
 

/*Event e1 occurring on a timeline T1  causes an event e2 to occur on another timeline 

T2 */ 

∀e1 ∀t1∀e2 ∃ t2 [ occurs(e1,t1)  &  t2 > t1  → occurs(e2,t2) ] 

 

e1 syncs  e2 
 

/* On a timeline T1,  if an event e1 occurs at time  t1, then no other events occur 

on T1 until   event e2 occurs at time t2 on  timeline T2. */ 

∀e1 ∀t1∀e2   ∀t2 ∀e3∀t3  [ occurs(e1,t1) & occurs(e2,t1) & occurs(e3,t3) 

& t2 ≥  t1 →   t3 > t2 ] /* That is, e3 has to wait for the occurrence of e2. */ 

 
 
 

 

Temporal constraints 
Constraints are relations on resources,time, and space which are required to be satisfied 

at specified time points or time intervals during a process.  While an exhaustive set of 

constraints is highly dependent on a given domain, below we list a set of temporal 

constraints that are relevant in business domains. 

Deadline( s, t ): State s must be achieved before  time t. 

Duration(s,  t ): The duration of a state s should not exceed t units of time. 

Options(s, n): The number of options at the end of state s should be at least n. Larger the value of n, more the chances that the task will be completed successfully. 

Criticality: There are states that are designated as critical states in an application. 

From this, we can define critical events as follows. 

● If si is a critical state, then an event ei such that ei: sj → si is a critical event. 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 787 February 2014 

 

 

● If ei is a critical event, then any event ej that enables ei is a critical event. 

 

The notion of criticality C(e,s) of an event e denotes how critical e is to finally cause a 

state s that is considered as critical. When multiple events e1,...,en enable an event e, 

the criticality of each event ei depends on how collectively they affect e. They may be 

classified as ANDenable or ORenable. We define degree of criticality d  where 0 <= d 

<= 1 as follows: 

○ ANDenable: In this case, degree d = 1 for each enabling 

event. For example, if e1 and e2 are events where both have to 

occur, then C(e1,s)=C(e2,s)=1. 

○ ORenable: In this case, degree d = 1/n where n = number of 

enabling events. For example, if e1 or e2 are the enabling events 

then, C(e1,s)=C(e2,s)=1/2. 

User Interactions 
We model user interactions using the notion of intentions of agents and strategies for 

managing them in the interactive tasks. Intention lets an agent select parts of an event 

plan and execute them.  An intention is modelled as a commitment to a set of 

sequences of (executable)events (actions) in the task model. With regard to Figure 1, 

we can define I1 and I2 as  intentions where I1 = Commitment({ <a2>}) and  I2 = 

Commitment( {<a2,a3>}). An intention can be simple or compound. I(a2) for example 

is a simple intention where the agent adopts the intention I to execute the action a2, 

executes a2, and finally drops I as it is no longer needed. Similarly, after adopting 

intention I1 above, the agent adopts a subintention I(a2) to execute a2.  

After executing a2, the intention I(a2) is dropped and finally I1 is dropped as well.  (It 

may be pointed out that the agent can drop its attention at any time after adopting an 

intention.)  While any random sequences of actions can be involved in defining an 

intention, it is useful to have some patterns in the sequences of events in real world 

business processes. We propose the following patterns. 

(a) Simple Intention(SI) This intention is defined for a single action. For example 

I(a1) is a simple intention where a1 is an action. 
 

 

(b) Compound Intention(COI) Often adopting an intention may result in adopting 

several subintentions. For example, in  I2 =Commit( { <a2,a3>}) above, adopting I2 

involves adopting subintention I(a2), and adopting subintention I(a3). Following are 

more complex forms of compound intentions. 
 

 

(c) Conditional Intention(CI): In this, the agent initially commits to two sequences 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 788 February 2014 

 

of events. The agent then at the time of execution t, chooses one of them as its sub-

intention 

if some condition C is true at t. The agent holds the Conditional Intention until it 

finishes execution of the selected sequence of events and drops the subintention. 

 

(d) Repetitive Intention (RI): The agent adopts the intention RI, denoted as  RI(w,c), 

when a sequence w of events has to be executed several times until some condition c 

is satisfied. When the agent commits to RI(w,c), if c is true, then the agent first adapts 

a subintention I(w) to execute the events in w, executes w, drops RI(w,c), and then 

adopts a new intention RI’(w,c). No intention is adopted when c is false. 

 

Intention supports 

An intention may be supported by states of world objects and other intentions. Often 

intentions occur in nested forms. In such cases, inner level intentions are supported by 

outer level intentions. When supports are removed, the supported intention is dropped, 

and all its inner level intentions are also dropped. 

 

Dropping an Intention: Agents must be careful about dropping intentions, since 

dropping intentions randomly can be harmful. Typically in interactive applications, 

we consider dropping intentions in the following cases: 

● Simple Intention: Dropping simple intention amounts to aborting the 

execution of an action. Note that this may produce serious consequences as 

the world resources may be thrown into unforeseen states recovering from 

which can be problematic. 

● Conditional Intention: Dropping this intention skips the execution of 

the entire conditional sequence. 

● Repetitive Intention: Dropping this intention at any time results in 

skipping the remaining execution of the loop. 

 

 

Constraint violation 

The occurrence of an event may cause certain constraints to be violated. Typically, a 

constraint violation results in an error state of the resources(instead of a valid state). 

While the details of how to handle violations are specific to the application, we present 

below 

the generic techniques for recovering from any constraint violation. 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 789 February 2014 

 

● Return to closest normal state: Perform operations on the resource to 

change the error state to a valid state as quickly as possible. 

● Return to closest reference state: In this, some of the the normal states are 

identified as reference states. When the agent finds the resources in an error 

state, it attempts to perform actions so as to navigate the resource states to the 

closest reference state. 

 

● Change of subgoal When the above two strategies fail, the agent examines 

the next subgoal G1(of a supergoal G) and replaces it by a new subgoal 

G1’(which is a valid subgoal of the supergoal G), obtains a new event plan, 

and continues execution. 

 

APPLICATION TO SHOPPING 
In a typical shopping activity, we categorize the events as follows: 

● α  type events: pick item from shelf, place item back in shelf, make 

payment, and finish shopping. 

● λ  type events : sale, nonavailability of items, phonemessages and lack of funds 

in account. 

● μ  type events: melting of frozen items, leaking cans, cooling of hot food, etc. 

● ε  type events: This refers to null events which is said to occur when events of 

other types do not occur and the agent chooses not to do any action. (in such 

cases the current state continues to exist since there are no events.) 

 

Task Model 
The shopping task is modelled using events as follows. 

 
 

● Start with a consumption plan; then derive a buying plan expressed 

as an interactive task model. 
 

● Every item will potentially have a consumption link using  general  and 

domain specific relations. That is, every item has a temporal behaviour. The 

absence of relations will make an item an orphan and orphaned items are to be 

minimized in a task plan. Typically, a buying event is linked to an interval of 

time, which may be specified at increasing levels of precision such as years, 

months and weeks, and hours. We use a calendar with increasing levels of 

(optional) refinements to refer to intervals over time in the format, for 

example,  <year1,year2> which refers to an interval between year1 and year2. 

Refinement is specified by nesting. To refer to 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 790 February 2014 

 

an abstract point in time, we write year: [month: [day: 

[hour:[min:[sec1,sec2,...,secn], 

..],..],...],..],..].  To refer to an interval, we use the tuple notation 

<timePoint1,timePoint2>. Thus, 2013:[Oct:[23:[<8:30,9:30>, <18:00,19:30>], 

<22,28>, 30], <Nov,Dec>] denotes a time point in the year 2013 using two 

time intervals <8:30,9:30> and <18:00,19:30> on 23 Oct 2013, an interval of 

seven days from Oct 22 to Oct 28, and an interval of two months from 

November to December. Note that years such as 2013, though are abstract time 

points,  are actually intervals at the lower levels of abstraction.  An event 

when  occurring over an abstract interval will occur at any point in that 

interval. Thus, buyCarrot at 2013:[Oct:[23]] will occur at any time on 23 Oct 

2013, and buyRice at 2013:[Oct] will 

occur at any time in the month Oct, 2013. buyOil in 2013:[Oct[<23,25>]] 

will occur at any time in the interval from 23 Oct 2013 to 25 Oct 2013. We 

can denote an event occurring over an interval using a similar notation. The 

notation e:[e1:[e10,e11],e2,e3:[e31,e31,e33: [e331,e332],e34], e4] specifies an 

event at four levels of abstraction. An abstract event may occur at a single 

abstract time 

instant, where the components of the abstract event are mapped on to time 

points in the given abstract timeline. 

 

Every item that is bought must be related to a consumption behaviour. At any given level 

of abstraction, consumptions may be instantaneous or may occur over an interval of time. 

Each item may induce a consumption behaviour that is specific to itself. 

 

We are now ready to specify consumption for a few examples. 

○ Milk is consumed regularly morning and evening. We express 

this as: milkconsumeIn ( w1) & ( w1 = 2013:[ Oct:[ 

21,22,23:[<0830,0930>,<1800,1900>],24,25,26,27] ] ) 

○ Consumeyoghurt ( weeks12 ) & weeks12 = [ 21Oct2013, 22Oct-

2013,  24Oct2013, 25Oct2013, 26Oct2013,  28Oct2013, 

29Oct2013,  1Nov2013, 2Nov2013,  4Nov2013 ]. 

 

 

Constraints 
Constraints in the shopping domain specify permitted resource states. Following are 

typical constraints in this domain. 

 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 791 February 2014 

 

 

Object constraints This type of constraints specify the relations between states of 

objects that must be satisfied. 

a. If an item x is bought, then the item y has to be bought, too. 

b. If n is the number of items of type X bought, then  n0 <= n <= nmax. 

c. Budget < nmax & overallweightofallitems < wmax. 

Temporal constraints This type of constraints specify the relations between 

temporal quantities. 

d. Shopping must be finished within  2 hours. 

e. Item x must be bought on all Saturdays in a month. 

f. Buy item x at the end of a shopping interval. 

g. Buy item x not more than once in a month. 
 

 

SHOPPING ASSISTANT 
The architecture of a preliminary version of a shopping agent implemented on an Android 

mobile device is shown in Figure 4 below [Cheng 2013]. The shopping plan implicitly 

uses an interactive task model implemented using a voice driven user interface. The 

dialogs (represented as dialog trees) between the user and the VUI exploits the 

flexibilities built into the shopping plan. 

 

 
 

 

RELATED WORK 
Events and states as foundational concepts to language understanding were first 

proposed in [Parsons 1990]. Actions and events occurring over intervals of time was 

initially  proposed by Allen [Allen et al. 1994] along with thirteen temporal relations 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 792 February 2014 

 

between temporal intervals which were popularly used in many applications ever since. 

The use of event calculus in reasoning with common sense knowledge is well known 

[Mueller 2010]. Work on interactive task models is very minimal so far despite its 

importance in business process applications. [Iqbal and Bailey 2007] discusses the need 

for breakpoints in interactive tasks. Constraints is a  well studied concept and has found 

applications in many real world tasks [Ashamalla et al. 2012]. Presently, use of event 

ontologies have found their way in simplifying quick development of event based 

applications[Event 2007] . 

 

 

CONCLUSION 
In this paper, we have presented a model for interactive task representation. We have 

argued that the task model is naturally represented using events and task model 

essentially is an event model incorporating actions and unexpected events that occur in a 

real world. We have also shown how abstractions can be defined over events and time, 

and how abstract events can be scheduled over a time interval. Some preliminary 

details of an initial implementation of our model in the shopping domain implemented 

on an Android mobile device has also been presented. The performance results from the 

implementation will be reported elsewhere later. The ultimate goal of this research is to 

extend this approach to model stories and subsequently apply the model to real world 

multiagent interactive tasks. 

 

 

ACKNOWLEDGEMENT 
The implementation referred to in this paper on an Android phone was carried out by 

Harry Shing Yan Cheng[Cheng 2013] . 

 

REFERENCES 

[Allen et al. 1994] Actions and Events in Interval Temporal Logic JAMES F. ALLEN 

and GEORGE FERGUSON, J. Logic Computation, 5, pp531579, 1994. 

 

[Ashamalla et al. 2012] Ashamalla, A., Beydoun, G., Low, G. & Yan, J., Towards 

modelling real time constraints, ICSOFT 2012: 7th International Conference on 

Software Paradigm Trends, pp. 158164, 2012. 

 

[Cheng 2013] Cheng H.S.Y., An Assistant on a Mobile Phone for Grocery 

Shopping, Honours Thesis, SCHOOL OF COMPUTER SCIENCE AND 



Proceedings of ASBBS   Volume 21 Number 1 

ASBBS Annual Conference: Las Vegas 793 February 2014 

 

ENGINEERING, THE UNIVERSITY OF NEW SOUTH WALES, 

Sydney 2013. 

[Event 2007] EVENT  The Event Ontology, 

http://lov.okfn.org/dataset/lov/details/vocabulary_event.html. 

[ Iqbaln and Bailey, 2007 ] S Iqbal and B Bailey, Understanding and developing 

models for detecting and differentiating breakpoints during interactive tasks, 

Proceeding CHI '07 Proceedings of the SIGCHI Conference on Human Factors 

in Computing Systems, Pages 697706, ACM New York, NY, USA 2007. 

[Mueller 2010] Erik T. Mueller,  Commonsense Reasoning, Morgan Kaufmann, 

2010. [Parsons 1990] Events in the Semantics of English, T Parsons, MIT 

Press, Cambridge, Massachusetts, 1990 

 

http://www.google.com/url?q=http%3A%2F%2Flov.okfn.org%2Fdataset%2Flov%2Fdetails%2Fvocabulary_event.html&amp;sa=D&amp;sntz=1&amp;usg=AFQjCNG6maxzyYv_CxfhvVdUC-2yGpP81Q

